

Traveling-Wave Superconducting Parametric Amplifiers

Peter Day, Byeong-Ho Eom, Rick Leduc

Jet Propulsion Laboratory, California Institute of
Technology

Nikita Klimovich, Jonas Zmuidzinas

California Institute of Technology

Outline

- Nonlinearity of kinetic inductance
 - Manifestation in superconducting resonators
- Kinetic Inductance Parametric Up-Converter (KPUP)
 - Multiplexable current sensor
- Kinetic inductance parametric amplifiers

Nonlinear kinetic inductance

Nonlinear kinetic inductance

• $\Delta\theta \sim 1^2$

$$L_k(I) = L_k(0) \left(1 + \frac{I^2}{I_*^2} + \dots \right)$$

- Line length =0.1m
- -> 21 radians
- Δ L/L(0) ~ 5%

Kinetic Inductance Non-linearity

- Ginsberg-Landau theory
 - suppression of superconducting order parameter by superfluid velocity

$$\begin{split} |\psi|^2 &= \psi_\infty^2 \left[1 - (\frac{\xi m^* v_s}{\hbar})^2\right] \\ \frac{n_s^*}{n_{s,0}^*} &= 1 - \frac{1}{2} \frac{\mu_0 \lambda_{eff}^2 J_s^2}{\mu_0 H_c^2} & \text{Supercurrent kinetic energy} \\ \frac{\delta L_s}{L_s} &= \frac{\delta \lambda_{eff}}{\lambda_{eff}} = \frac{1}{2} \frac{\delta n_s^*}{n_{s,0}^*} \end{split} \qquad \qquad \begin{split} E_{pair} &= 2N_0 \Delta^2 V \end{split}$$

- Nonlinearity is large for materials with large λ
 - High normal state resistivity, eg. Nitrides TiN, NbTiN, ...
- Δn_s is not associated with quasiparticle creation

TiN Resonator measurements

Upward frequency sweeps

Increasing drive power

Nonlinear "Duffing" oscillator

- Resonance frequency depends on resonator current
- Hysteretic resonance curves:

Non-linear resonator model

$$\delta f/f_0 = -k_f I_{res}^2
\delta Q_i^{-1} = k_Q I_{res}^2$$

$$S_{21}(f, I_{res}) = 1 - \frac{Q_r / Q_c}{1 + 2iQ_r[f_{r,0} - \delta f_r(I_{res}) - f] / f_0}$$

$$I_{res}^2 = \frac{Q_c|1 - S_{21}|^2 P_{feedline}}{Z_0}$$

- Hysteresis past a critical drive power
- Determines contribution of amplifier to detector noise
- No nonlinear dissipation (under some conditions) $k_0 = 0$!

Measurements at elevated T

Measurements at elevated T

 Regime with low (zero?) nonlinear dissipation had not be accessed in previous attempts to use K.I. nonlinearity for device applications

Kinetic Inductance Parametric Up-converter (KPUP)

Kinetic Inductance current sensor

• for $P_{read} = 1\mu W$, $T_N = 5K$, $- > (S_I^{amp})^{1/2} \sim 6 \text{ pA / Hz}^{1/2}$

Up-conversion via kinetic inductance nonlinearity

Sidebands produced through phase modulation:

$$Ae^{i\omega_c t + i\xi I \sin \Omega t} \approx$$

$$Ae^{i\omega_c t} + \frac{A\xi I}{2}e^{i(\omega_c + \Omega)t} - \frac{A\xi I}{2}e^{i(\omega_c - \Omega)t}$$

KPUP device concept

- low frequency current modulates resonator frequency
- compared to nonresonant TRL:
 - phase response increased by Q
 - but max readout power decreased by Q^2
 - smaller input inductance

KPUP design

Frequency shift measurement

• $\Delta f/f \sim 0.1 - \text{no change in } Q$

Application: TES readout circuit

- Several TES signals combined at input to one KPUP
- Similar to circuit used for AC SQUID MUX
- Each signal creates a sideband on the microwave carrier

AC first stage MUX

L-C filters

- single layer NbTiN
- interdigital capacitors
- inductance is mainly kinetic
- L \sim 4 μ H, C \sim 20 pF
- new version uses spiral inductors

Noise

MUX circuit

- Two-level multiplexing circuit
- First stage is similar to FDM SQUID mux

Compared to SQUID array

- Input inductance is somewhat smaller ~ 19 nH
 - compared to ~100 nH for SQUID array
 - could be decreased further
- Bias power is ~ 30 nW
 - Only a fraction of that is dissipated in KPUP
 - KPUP can be located on cold stage
 - Wiring inductance between TES and KPUP can be small
- Microwave readout allows for multiplexing of several KPUPs
- Output is monotonic, rather than periodic

Kinetic Inductance Travelingwave (KIT) Paramp

Parametric amplifiers

NIST Josephson Parametric Amplifier

Parametric amplifiers

Nonlinearity

- Response to strong pump tone
- Transfer of energy from pump to signal
- Amplification
- Produce idler tone

$$- f_p = f_s + f_i$$

- or
$$2f_p = f_s + f_i$$

Purely reactive nonlinearity

 Need not add noise (beyond QM requirement)

NIST Josephson Parametric Amplifier

Kinetic inductance cavity para-amp

- Tholen et al. (2007)
- Nb CPW resonator

Noise not reported

KIT paramp ver 1.0

- Long nonlinear transmission line
 - Single layer of TiN or NbTiN
 - 0.8 m CPW length
 - Tapers at input, output match 50 ohms
- Analogous to visible frequency fiber optic paramp
 - Traveling wave design
 - Broadband

1⁄um

1um

50nm

1um

Traveling-wave amplifier design challenges

- Phase matching
 - Need to maintain phase relation between signal, pump, idler
 - Dispersion results in phase slippage between pump, signal and idler
 - Superconducting TRL nearly dispersionless for f << f_{gap}
- Non-linearity has a dispersive effect
 - Self Phase Modulation (SPM), Cross Phase Modulation (XPM)
- Harmonic generation is phase matched (and efficient) process in a dispersionless nonlinear TRL
 - Depletes pump power before useable gain

Dispersion Engineering

• Periodic loading to produce bandgap at $3\omega_p$

Achieving phase match

Also use dispersion to cancel nonlinear phase slippage

Achieving phase match

Also use dispersion to cancel nonlinear phase slippage

V1.0 Paramp gain

- Measured gain of a prototype device (f_{pump} = 8.5 GHz)
- Pump power ~ 100 uW

• Compare to cavity paramp with ~1 - 10MHz bandwidth

50 ohm KIT

 $Z_0 = 200-300$ ohms for CPW KIT (due to large L_{kin}) Increase capacitance with IDC 1, 0.5, 0.32, 0.25 um $v_{ph} = 0.004 - 0.016 c$ 2.5 cm length -18 to -22 dB return loss from TDR Other 50Ω KITs: AA Adamyan et al. (2016), Chaudhuri et al. (2017). 0.5, 0.32, 0.25 um

50 ohm KIT

- Lines are dispersive
 - $-\lambda$ / 4 resonance from IDC finger length
 - f_{res} = 60 GHz for 0.5 um line width
 - Pump harmonics suppressed due to phase mismatch
 - no additional stop bands needed
 - Effect on bandwidth, phase matching

Three-wave vs Four-wave Mixing

4 WM:

$$L(I) = L_0 \left(1 + \frac{I^2}{I_*^2} \right)$$

$$2\omega_{p} = \omega_{p} + \omega_{i}$$
 ω_{p}
 ω_{s}

$$G_s = \exp(g2\pi L/\lambda)$$
 $g = \frac{1}{8} \frac{I_{pump}^2}{I_*^2}$ /rad

3 WM:

$$L(I) = L_0 \left(1 + \frac{I^2 + 2II_{DC} + I_{DC}^2}{I_*^2} \right)$$

$$\frac{\partial^2 I}{\partial z^2} - \frac{\partial}{\partial t} \left[L(I)C \frac{\partial I}{\partial t} \right] = 0$$

$$g = \frac{1}{4} \frac{I_{DC} I_{pump}}{I_*^2} / \text{rad}$$

3WM: Engineering dispersion

- Dispersive effect of capacitor finger self-resonance produces phase mismatch between pump and signal/idler
 - Can compensate by adding periodic modulation

Gain

- 320 nm linewidth
- 2.5 cm total length
- Pump power in range
 200 nW to 2 μW
 - Depends on applied DC current

Noise

• Y-factor noise measurement

PD

37

Conclusions

- Kinetic inductance can provide a purely reactive nonlinearity
- Important parameter for MKID detectors
- Can be used to make interesting devices
 - Up-converter/ Current sensor: KPUP
 - Parametric Amplifiers
 - Squeezed state generators
 - Multipliers

4WM in 0.25 micron linewidth devices, 2.5 cm length

- Non-phase matched 4 wave mixing
- Pump frequency is not constrained
 - No dispersion engineering
 - not phase matched
- 15 20 dB
- Pump power ~ 5 uW
- relatively narrow bandwidth due to dispersion

Gain measurement compared to theory

- Coupled mode theory including harmonic generation and measured dispersion
- Single parameter fit : $(I/I_*)^2 = 0.08$
- Max nonlinearity agrees with phase shift vs. dc current measurements

Signal-idler noise correlation

 Noise at frequencies symmetrically located around f_{pump}/2: 7.1384 GHz (I1, Q1), 7.6086 GHz (I2, Q2)

Pump on

PD

41

Signal-idler noise correlation

 Noise at frequencies symmetrically located around f_{pump}/2: 7.1384 GHz (I1, Q1), 7.6086 GHz (I2, Q2)

